p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.82C25, C23.39C24, C42.571C23, C24.504C23, C4⋊Q8⋊32C22, (C4×D4)⋊40C22, (C4×Q8)⋊41C22, C4⋊D4⋊24C22, C4⋊C4.519C23, (C2×C4).602C24, C22⋊Q8⋊28C22, C22.32C24⋊3C2, (C2×D4).300C23, C4.4D4⋊79C22, C22⋊C4.98C23, (C2×Q8).285C23, C42.C2⋊53C22, C22.19C24⋊28C2, C42⋊C2⋊37C22, C42⋊2C2⋊34C22, C22≀C2.27C22, (C22×C4).355C23, (C2×C42).940C22, (C23×C4).608C22, C2.19(C2.C25), C23.36C23⋊26C2, C23.33C23⋊18C2, C23.41C23⋊12C2, C22.46C24⋊14C2, C22.47C24⋊13C2, C22.49C24⋊11C2, C22.31C24⋊14C2, C22.50C24⋊18C2, C22.D4.43C22, (C2×C4⋊C4)⋊71C22, C4.138(C2×C4○D4), C4⋊C4○(C22.D4), C22.15(C2×C4○D4), C2.47(C22×C4○D4), (C2×C42⋊C2)⋊66C2, (C2×C4).491(C4○D4), (C2×C4○D4).225C22, (C2×C22⋊C4).546C22, SmallGroup(128,2225)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.82C25
G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=b, e2=f2=a, ab=ba, dcd-1=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 732 in 520 conjugacy classes, 388 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C23×C4, C2×C4○D4, C2×C42⋊C2, C23.33C23, C22.19C24, C23.36C23, C22.31C24, C22.32C24, C23.41C23, C22.46C24, C22.47C24, C22.49C24, C22.50C24, C22.82C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, C25, C22×C4○D4, C2.C25, C22.82C25
(1 15)(2 16)(3 13)(4 14)(5 20)(6 17)(7 18)(8 19)(9 24)(10 21)(11 22)(12 23)(25 30)(26 31)(27 32)(28 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 31)(2 27)(3 29)(4 25)(5 23)(6 9)(7 21)(8 11)(10 18)(12 20)(13 28)(14 30)(15 26)(16 32)(17 24)(19 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 15 17)(2 7 16 18)(3 8 13 19)(4 5 14 20)(9 28 24 29)(10 25 21 30)(11 26 22 31)(12 27 23 32)
(1 17 15 6)(2 7 16 18)(3 19 13 8)(4 5 14 20)(9 31 24 26)(10 27 21 32)(11 29 22 28)(12 25 23 30)
(1 3)(2 4)(5 7)(6 8)(9 22)(10 23)(11 24)(12 21)(13 15)(14 16)(17 19)(18 20)(25 32)(26 29)(27 30)(28 31)
G:=sub<Sym(32)| (1,15)(2,16)(3,13)(4,14)(5,20)(6,17)(7,18)(8,19)(9,24)(10,21)(11,22)(12,23)(25,30)(26,31)(27,32)(28,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,31)(2,27)(3,29)(4,25)(5,23)(6,9)(7,21)(8,11)(10,18)(12,20)(13,28)(14,30)(15,26)(16,32)(17,24)(19,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,15,17)(2,7,16,18)(3,8,13,19)(4,5,14,20)(9,28,24,29)(10,25,21,30)(11,26,22,31)(12,27,23,32), (1,17,15,6)(2,7,16,18)(3,19,13,8)(4,5,14,20)(9,31,24,26)(10,27,21,32)(11,29,22,28)(12,25,23,30), (1,3)(2,4)(5,7)(6,8)(9,22)(10,23)(11,24)(12,21)(13,15)(14,16)(17,19)(18,20)(25,32)(26,29)(27,30)(28,31)>;
G:=Group( (1,15)(2,16)(3,13)(4,14)(5,20)(6,17)(7,18)(8,19)(9,24)(10,21)(11,22)(12,23)(25,30)(26,31)(27,32)(28,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,31)(2,27)(3,29)(4,25)(5,23)(6,9)(7,21)(8,11)(10,18)(12,20)(13,28)(14,30)(15,26)(16,32)(17,24)(19,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,15,17)(2,7,16,18)(3,8,13,19)(4,5,14,20)(9,28,24,29)(10,25,21,30)(11,26,22,31)(12,27,23,32), (1,17,15,6)(2,7,16,18)(3,19,13,8)(4,5,14,20)(9,31,24,26)(10,27,21,32)(11,29,22,28)(12,25,23,30), (1,3)(2,4)(5,7)(6,8)(9,22)(10,23)(11,24)(12,21)(13,15)(14,16)(17,19)(18,20)(25,32)(26,29)(27,30)(28,31) );
G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,20),(6,17),(7,18),(8,19),(9,24),(10,21),(11,22),(12,23),(25,30),(26,31),(27,32),(28,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,31),(2,27),(3,29),(4,25),(5,23),(6,9),(7,21),(8,11),(10,18),(12,20),(13,28),(14,30),(15,26),(16,32),(17,24),(19,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,15,17),(2,7,16,18),(3,8,13,19),(4,5,14,20),(9,28,24,29),(10,25,21,30),(11,26,22,31),(12,27,23,32)], [(1,17,15,6),(2,7,16,18),(3,19,13,8),(4,5,14,20),(9,31,24,26),(10,27,21,32),(11,29,22,28),(12,25,23,30)], [(1,3),(2,4),(5,7),(6,8),(9,22),(10,23),(11,24),(12,21),(13,15),(14,16),(17,19),(18,20),(25,32),(26,29),(27,30),(28,31)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 4A | ··· | 4P | 4Q | ··· | 4AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C2.C25 |
kernel | C22.82C25 | C2×C42⋊C2 | C23.33C23 | C22.19C24 | C23.36C23 | C22.31C24 | C22.32C24 | C23.41C23 | C22.46C24 | C22.47C24 | C22.49C24 | C22.50C24 | C2×C4 | C2 |
# reps | 1 | 1 | 2 | 2 | 4 | 1 | 4 | 1 | 4 | 4 | 4 | 4 | 8 | 4 |
Matrix representation of C22.82C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 2 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 4 | 2 | 2 | 4 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 1 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 2 | 0 | 2 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 2 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,4,0,0,0,0,0,0,1,0,0,3,0,2,0,0,0,0,1,0,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,4,0,0,0,3,2,2,0,0,0,0,0,2,0,0,0,0,0,4,3],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,4,0,2,0,0,0,2,0,0,0,0,0,0,3,2,0,0,0,0,0,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,2,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C22.82C25 in GAP, Magma, Sage, TeX
C_2^2._{82}C_2^5
% in TeX
G:=Group("C2^2.82C2^5");
// GroupNames label
G:=SmallGroup(128,2225);
// by ID
G=gap.SmallGroup(128,2225);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,184,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=b,e^2=f^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations